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Abstract 

Social network analysis and agent-based modeling are two 
approaches used to study biological and artificial multi-agent 
systems. However, so far there is little work integrating these 
two approaches. Here we present a first step toward integration. 
We developed a novel approach that allows the creation of a 
social network on the basis of measures of interactions in an 
agent-based model for purposes of social network analysis. We 
illustrate this approach by applying it to a minimalist case study 
in swarm robotics loosely inspired by ant foraging behavior. 
For simplicity, we measured a network’s inter-agent connection 
weights as the total number of interactions between mobile 
agents. This measure allowed us to construct weighted directed 
networks from the simulation results. We then applied standard 
methods from social network analysis, specifically focusing on 
node centralities, to find out which are the most influential 
nodes in the network. This revealed that task allocation 
emerges and induces two classes of agents, namely foragers and 
loafers, and that their relative frequency depends on food 
availability. This finding is consistent with the behavioral 
analysis, thereby showing the compatibility of these two 
approaches. 

Introduction 

Social network analysis (SNA) has been widely used in the 
study of biological multi-agent systems (Krause et al., 2015). 
In recent years, there has been an increasing interest in 
analyzing animal social networks (Scott and Carrington, 
2014). For example, there are studies in social networks of 
spider monkeys (Ramos-Fernández et al., 2009), crows (Rutz 
et al., 2012) and social insects (Charbonneau et al., 2013). 
Similarly, agent-based modeling (ABM) has been applied to 
the same area. Ramos-Fernández et al. (2006) studied the 
emergence of animal social structure using agent-based 
models. Guo and Wilensky (2016), researchers in Alife, have 
demonstrated the utility of agent-based models of social 
insects as powerful tools to understand complex system 
principles. Moreover, Wang et al. (2019) studied collective 
behavior of bacteria, which use signaling systems known as 
quorum-sensing (QS) to communicate and cooperate. They 
used an agent-based modeling approach to understand the 
emergence of complex QS architectures and functions. 

 On the other hand, there are few studies using these two 
approaches (SNA and ABM) in combination in artificial 
multi-agent systems (MAS), particularly, in swarm robotics. 
Swarm robotics is a recent approach in the field of artificial 
swarm intelligence to study the coordination of multi-robot 
systems (MRS) without central control inspired on swarms 
observed in nature, such as those of social insects. Collective 
behavior emerges from robot-robot and robot-environment 
interactions (Tan and Zheng, 2013). There is a strong 
potential found in mimicking social insect behavior because 
this is highly convenient for solving complex coordination 
tasks (Alers et al., 2014). For example, ant foraging behavior 
induces task allocation as an emergent property, which is 
suitable for swarm robotics (Labella et al., 2006). 
 In this study, we are interested in applying social network 
analysis to agent-based modeling. There are previous studies 
that successfully combined SNA and ABM (Fontana and 
Terna, 2015) or SNA and MAS (Ma et al., 2009; Grant, 
2009). For a better understanding, we have developed a 
taxonomy of social interaction models based on the approach 
of Powers et al. (2018), as shown in Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: A taxonomy of social interaction models. We have 
two classes of social interaction models: network-based and 
behavior-based. Social network analysis (SNA) is an instance 
of network-based model and agent-based modeling (ABM) is 
an instance of behavior-based model. We propose there 
should be a bridge (dashed blue arrow) from behavior-based 
to network-based models to have a complete perspective of 
the network dynamics in a complex system in order to get new 
insights on their emerging properties. That is, moving from 
agent-based modeling to social network analysis. 



 Figure 1 shows our proposed taxonomy where we consider 
there should be a bridge from behavior-based (e.g. ABM) to 
network-based (e.g. SNA) models to have a complete 
perspective of the network dynamics in a complex system in 
order to get new insights on its emerging properties. Thus, our 
representation of moving from ABM to SNA.  
 We found that this approach (from ABM to SNA) has not 
been exploited in foraging and task allocation in swarm 
robotics. However, there are previous papers using either one 
of these two approaches (ABM or SNA). Iba (2013), 
developed agent-based modeling and simulations with 
swarms; Palestra et al. (2017), modeled and simulated rescue 
robots using the swarm robotics approach; Koval et al. (2009), 
introduced a social network to a swarm robotics system in 
order to improve accuracy in automatic target recognition. 
 The main goal of this study is to apply our proposed 
approach, from agent-based modeling to social network 
analysis, to a case study in swarm robotics inspired by ant 
foraging behavior to show task allocation as an emergent 
property of the complex system.  

The case of ant foraging behavior in swarm robotics 

Task allocation, in social insects, refers to the processes by 
which a task is carried out by each member of the colony. As 
examples, we have foraging and brood care. Additionally, 
these processes adapt to changing conditions (Gordon, 2016). 
In this paper, we are interested in task allocation as an 
emergent property of ant foraging behavior.  
 The main features of ant foraging behavior can be 
summarized as follows (Labella et al., 2006):  
• The ant explores the environment in random displacements 
until it finds food. There are three cases of how to take it to 
the nest: (i) the ant pulls it, if it is not too heavy, (ii) the ant 
cuts it, (iii) the ant uses long or short recruitment (as a result 
of spreading pheromone trail).  
• In individual or collective retrieval, food is directly pulled 
to the nest. 
• When a forager returns to the nest, it unloads food by 
mouth-to-mouth contact into the crops (a pouch located just 
upstream of their stomachs) of other ants (Greenwald et al., 
2018). 
• After retrieving food, the ant goes straight back to the 
location where it found food. 
 Deneubourg et al. (1987) modeled an ant of the species 
Pachycondyla apicalis as an agent. Each agent has a 
probability Pl of leaving the nest, that varies depending on 
prior successes or failures. That is, when an ant retrieves food, 
its Pl increases by a constant Δ. Conversely, when an ant 
spends a lot of time without retrieving food, its Pl decreases 
by a constant Δ. Pl is bounded in the range [Pmin, Pmax]. They 
showed, by means of numerical simulations, that this model 
can explain task allocation and adaptation to the environment 
in ants (Labella et al., 2006).  
 The Variable Delta Rule algorithm (VDR) was based on 
Deneubourg et al.’s model. The main change was to multiply 
Δ by the number of consecutive successes or failures when 
increasing or decreasing the probability of leaving the nest, Pl, 
to carry out experiments in less time (Labella, 2003; Labella 
et al., 2006). This simple algorithm might be well suited for 
use in the context of swarm robotics. 

 Foraging, in test application for multi-robot systems 
(MRS), refers to searching for objects and taking them to a 
place called “nest” (Labella, 2003). 
 A swarm of interacting robots produces emergent 
behaviors. We can analyze the local interactions that allow the 
process of self-organization in these robots using social 
network analysis. Social network analysis studies the 
structural properties of groups or individuals in a network. It 
considers the effect of the interconnections on each other 
(Srivastava et al., 2014).  
 We developed an agent-based model based on the Variable 
Delta Rule algorithm to simulate a swarm of robots inspired 
by ant foraging behavior. Furthermore, for simplicity we 
focused on one of the main traits of Pachycondyla apicalis 
ants, that is hunting alone, consequently, there is no need of 
pheromone trails (Monmarché et al., 2000). Therefore, we 
modeled the case in which each forager takes only a unit of 
food when having a successful food retrieval without using 
pheromone trails. Then, we applied social network analysis to 
show task allocation as an emergent property of this model.  

Methods 

In this section, we present the methodology and tools that we 
used to implement, simulate and analyze the agent-based 
model of swarm robotics. 

Variable Delta Rule Algorithm 

We implemented the Variable Delta Rule algorithm (Labella, 
2003; Labella et al., 2006). It consists in the following rules: 
each time the mobile agent has a success in food retrieval, the 
number of successes is increased and multiplied by Δ, then it 
is added to its Pl. Conversely, if the mobile agent has a failure 
in food retrieval, the number of failures is increased and 
multiplied by Δ, then it is subtracted from its Pl. Therefore, 
each mobile agent’s probability of leaving the nest, Pl, is 
determined by the number of consecutive successful or failed 
food retrieval events. Note that Pl is bounded in the range 
[Pmin, Pmax]. This is shown in Algorithm 1. 
 

Algorithm 1 Variable Delta Rule  

Initialization: 
     successes  0 
     failures  0 
     Pl  Initial value 
 
if food is retrieved then 
     successes  successes + 1 
     failures  0 
     Pl  Pl  + (successes * Δ) 
     if Pl > Pmax then 
          Pl  Pmax 

     end if 
else if timeout then 
     failures  failures + 1 
     successes  0 
     Pl  Pl  - (failures * Δ) 
     if Pl < Pmin then 
          Pl  Pmin 

 



Agent-based model (ABM) of swarm robotics 

Environment. The simulated environment is a bounded two-
dimensional grid (when a mobile agent reaches an edge it 
rotates 180 degrees and continues moving) and has a size of 
91 x 91 units, with a unique nest located at the center (cluster 
of brown patches). A unit of the grid is represented by a patch 
of 5 x 5 pixels. A unit of food is represented by a unit of the 
grid located in a food source.  
 A fixed value in the range [0, 200] is assigned to each unit 
of the grid as follows: the distance between the focal unit of 
the grid and the center of the nest is calculated, then it is 
subtracted from 200 to obtain its “nest scent” value. This 
value is greater as the focal unit of the grid is closer to the 
nest. This approach is used by mobile agents to find their way 
back to the nest, it is known as following “nest scent” and it is 
described as follows: before each step forward when coming 
back directly to the nest, the mobile agent is going to head 
toward the greatest value of “nest scent” that is ahead of it and 
between the angles -45, 0 or 45. This is repeated until 
reaching the nest (Wilensky, 1997). 
 On the grid, food sources are clusters of units of food that 
are established in a fixed position and have a variable size 
between small (9 units of food), medium (45 units of food) or 
large (109 units of food). We have three food sources 
identified with the following colors, from the closest to the 
furthest from the nest: magenta, lime and turquoise. Figure 2 
shows the distribution and different sizes for food sources in 
the environment. The environment is dynamic. A food source 
decreases by one unit of food each time a mobile agent has a 
successful food retrieval. 
 
a)                                b)                               c) 
 
 
 
 
 
 
 
 
Figure 2: The simulated environments with different sized 
food clusters: a) Small (9 units of food for each food source),   
b) Medium (45 units of food for each food source), c) Large 
(109 units of food for each food source). The nest is in the 
center of the environment (cluster of brown patches). There 
are three available food sources, the color of each one 
indicates the distance to the nest, from the closest to the 
furthest we have: magenta, lime and turquoise. 
 

 
Mobile Agents. We consider six mobile agents with initial 
positions in the center of the nest. Each mobile agent 
represents a robot. Movements, behaviors and interactions of 
mobile agents are described as follows:  
 
Movements. Mobile agents have two classes of movements, 
these are described as follows: 
• Foraging movement: When a mobile agent is out of the 
nest, it moves around the environment by random 
displacements to right and left each time-step, while 

considering not to take an occupied unit of the grid where 
another mobile agent is, as an obstacle avoidance mechanism. 
A displacement has a maximum turning angle of ± 40 degrees 
(Wilensky, 1997).  
• Nest seeking movement: When a mobile agent is returning 
to the nest, it moves by displacements following the “nest 
scent” in each time-step. That is, it moves towards the next 
unit of the grid that has the greatest value of “nest scent” until 
reaching the nest, while considering not to take an occupied 
unit of the grid where another mobile agent is, to avoid 
obstacles. 
 
Behaviors. Each mobile agent assumes one of the following 
behaviors per time-step depending on its own parameters and 
environment conditions (Labella et al., 2006): 
• Rest: Stays in the nest. 
• Search for food: Explores the environment while checking 
if there is a unit of food in the path. If there is one, the mobile 
agent takes it and returns to the nest with food (its number of 
successes is increased). If there is not one, the mobile agent 
keeps randomly moving around until a timeout occurs and it 
returns to the nest without food (its number of failures is 
increased). 
• Return to nest: Finds the way back to the nest following 
the “nest scent” (Wilensky, 1997). It returns to the nest if a 
unit of food was successfully retrieved or a timeout occurs. 
• Feed: Transfers food to all the mobile agents in the nest, 
when arriving to it after a successful food retrieval. Its number 
of successes is increased by one, therefore its probability of 
leaving the nest is going to be higher when updating it. 
 Furthermore, the mobile agents change their color to 
identify the performed behavior, as shown in Table 1. 
 

Behavior Color 
 

Rest Blue 
 

Search for food Red 
 

Return to nest 
(with food) 

Yellow 

Return to nest 
(without food) 

Violet 

Feed 
 

Orange 

 
Table 1: Colors representing the behavior of each agent. 
 
 
Interactions. 
• Agent - Agent (among mobile agents): When a mobile 
agent arrives to the nest after retrieving a unit of food, there is 
an interaction between that mobile agent (emitter) and all the 
mobile agents in the nest (receivers), which represents food 
transfer. When a mobile agent is the emitter, its corresponding 
interaction variables (each one corresponds to an emitter-
receiver interaction) increase by one. This is prompted by the 
forager ant’s interactions with the rest of the colony to feed 
them. Figure 4 shows an example of interaction among mobile 
agents. 
 



 
 
 
 
 
 
 
 
Figure 4: Interaction between mobile agents. The orange-
colored mobile agent (emitter) returned to the nest after 
retrieving a unit of food, when it arrives to the nest it interacts 
with all the blue-colored mobile agents (receivers) that are on 
the cluster of brown patches. This interaction represents food 
transfer (white arrow) from emitter to receivers and is loosely 
inspired by a forager ant feeding the rest of the colony in the 
nest. 
 
 
• Agent - Food Source (among mobile agents and food 
source clusters): When a mobile agent finds and retrieves a 
unit of food, there is an interaction between that mobile agent 
and the retrieved unit of food from a food source, this is 
inspired by the forager ant’s interactions with a food source. 
Each time a unit of food is retrieved from a food source, the 
number of units of food of that food source is decreased and 
the retrieved unit of food changes to color black to represent it 
was taken. Figure 5 shows an example of interaction among a 
mobile agent and a food source.  
 
 
 
 
 
 
 
 
 
Figure 5: Interaction between a mobile agent and a food 
source. a) When a red-colored mobile agent finds out a unit of 
food, it interacts with the food source and b) it changes its 
color to yellow. The retrieved unit of food changes to color 
black to represent it was taken. 
 

Experiments 

The simulation-based experiments consisted in introducing a 
swarm of six mobile agents and three food sources (clusters of 
magenta, lime and turquoise patches), which we varied from 
small sizes (9 units of food for each food source cluster), 
medium sizes (45 units of food for each food source cluster) 
and large sizes (109 units of food for each food source 
cluster) to show task allocation under changing conditions of 
the environment. We created 30 instances per food sources 
size, i.e. 90 simulations in total. Each simulation lasted 2400 
time-steps. The model was initialized with the following 
parameters (Labella, 2003): The search timeout was fixed to 
228 units of time, Δ was set to 0.005, Pmin to 0.0015, Pmax to 
0.05 and Pinit to 0.033. Figure 6 shows a representative 
simulation of the agent-based model of swarm robotics and its 
components. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: Screenshot of the agent-based model of swarm 
robotics after 2400 time-steps. a) Red-colored mobile agents 
are searching for food and b) blue-colored mobile agents are 
resting in the nest (cluster of brown patches). There are three 
food sources, from closest to furthest to the nest: c) magenta, 
d) lime and e) turquoise. 
 

Social network analysis (SNA) 

We followed the proposal by Wasserman and Faust (1994), 
who used network graphs to represent agent structures and 
network measures such as strength and centrality, to 
determine the particular role of individuals in the network’s 
structure. We propose to represent mobile agents and their 
interactions in each simulation as a weighted directed network 
and focus on outdegree and weighted outdegree centralities to 
identify the induced classes, as a result of task allocation: 
foragers and loafers. 
 We constructed ninety weighted directed networks, from 
the 90 simulations, i.e. 30 simulations per food sources size 
(small, medium and large) as described in the Methods. We 
added a directed edge between two nodes (source and target) 
to represent whenever one of the two mobile agents (emitter) 
interacted with another one in the nest (receiver) to represent 
food transfer, this is inspired by the forager ants’ interactions 
with the rest of the colony to feed them. Weights were 
assigned according to the number of interactions between the 
two mobile agents. Nodes were labeled with the six mobile 
agents’ identifiers, from 0 to 5.  
 Measures were computed for each weighted directed 
network. We focused on outdegree and weighted outdegree 
centralities. Degree centrality shows the quality of a network 
node’s interconnectedness by the number of direct contacts 
(Landherr et al., 2010). The outdegree is the number of ties 
that a node directs to others, it is interpreted as a quantity of 
information that is spread from one node to other (by 
outgoing edge). A high value is interpreted as sociability 
(Mansur et al., 2016). The centrality of nodes allows us to 
identify the most important or central nodes in a network. 

a) b) 



Thus, outdegree centrality is a measure of the importance of a 
node, based on its number of ties. It is interpreted as the 
involvement of a node in the network. Weighted outdegree 
centrality is a measure of the importance of a node, based on 
its strength in terms of the total weight of their connections. It 
is interpreted as strength of collaborative ties (Opsahl et al., 
2010). To calculate node strength, we have the following 
equation: 
 
 
                                                                                              (1) 
 
 
where w is the weighted adjacency matrix and wij represents 
the weight of the tie, it is greater than 0 if the node i is 
connected to node j (Opsahl et al., 2010). 
 Outdegree centrality can lead us to identify the mobile 
agents who are the most interconnected to others (i.e. more 
ties), whereas weighted outdegree centrality can lead us to 
identify the mobile agents who have the greatest number of 
interactions (i.e. wider edges) with the rest. Hence, we need 
both centrality measures to identify the expected induced 
classes, as a result of task allocation: foragers and loafers. 
Foragers’ task consists in searching and retrieving food to 
feed the rest of the mobile agents; loafers’ task consists in 
staying in the nest. Thus, foragers must be the most 
interconnected to the rest (i.e. having more ties) and with the 
greatest number of interactions (i.e. having wider edges). In 
the shown networks, node size refers to the value of outdegree 
or weighted outdegree centralities. 
 According to Labella’s (2003) experimental results with 
MindS-bots (swarm of robots), he found that the distribution 
of probability of leaving the nest had two peaks and the 
boundary between the two groups was around 0.025, therefore 
there were two groups of MindS-bots: foragers (Pl  ≥ 0.025) 
and loafers (Pl  < 0.025). As described in the Experiments, our 
model was initialized under Labella’s (2003) experimental 
parameters, thus, we compared the results with the second 
parameter to identify foragers and loafers: mean probability of 
leaving the nest (mean Pl). Therefore, those mobile agents 
with mean Pl ≥ 0.025 are likely to be foragers (red-colored 
nodes) and those with mean Pl < 0.025 are likely to be loafers 
(blue-colored nodes). 

Results 

First, we show the results for three representative simulations 
(each one with a different food sources size). Then, we show 
in summary the results for the 90 simulations. 

Simulation 1 - Small food sources size  

Figure 7 shows the weighted directed network obtained with 
the results of simulation 1. The mean outdegree centrality of 
this network was 1.83, that indicates there were few nodes 
that were the most interconnected to others, in this case, only 
node 3 had ties to all the other nodes. The mean weighted 
outdegree centrality was 2.17, that indicates there were few 
interactions between mobile agents. There were two edges 
with high weight values, those were (3,2) and (3,5), which 
represented the greatest number of interactions between the 

mobile agents. Node 3 had the greatest number of ties and 
wider edges, moreover, it has a Pl  > 0.025, therefore we 
interpreted it as a forager. The mean probability of leaving the 
nest of all nodes was 0.021, which was less than 0.025, so we 
expected more loafers than foragers. Likely agents to be 
foragers by Pl were represented by red-colored nodes and 
likely agents to be loafers by Pl were represented by blue-
colored nodes. After analyzing the results, we got 1 forager 
(node 3) and 5 loafers (nodes 0, 1, 2, 4, 5). 
 
 
 
 
 
 
 
 
 
 

 
 

(a) Social network 1 with nodes sized by their outdegree 
centrality  

 
 
 
 
 
 
 
 
 
 
 

(b) Social network 1 with nodes sized by their weighted 
outdegree centrality  

 
Figure 7: Graphs of social network 1 (the size of food 
sources is small) between six mobile agents where node sizes 
are reflecting: (a) Outdegree centrality, (b) Weighted 
outdegree centrality. Edge widths are reflecting the number of 
interactions between mobile agents. Node colors represent the 
probability of leaving the nest: if Pl ≥ 0.025 the node is red, 
therefore, it is likely to be a forager and if Pl  < 0.025 the node 
is blue, therefore, it is likely to be a loafer. As it can be seen, 
node color and size are consistent with each other, that means 
bigger nodes and probability to be a forager coincide; 
similarly, smaller nodes and probability to be a loafer also 
coincide. Therefore, both approaches obtain same results (in 
this case, 1 forager and 5 loafers). 
 

Simulation 2 - Medium food sources size  

Figure 8 shows the weighted directed network obtained with 
the results of simulation 2. The mean outdegree centrality of 
this network was 2.67, that indicates there was a moderate 
number of nodes that were the most interconnected to others, 
more than in Simulation 1. The mean weighted outdegree 
centrality was 4.5, that indicates there was a greater number of 
interactions between mobile agents than in Simulation 1. 



There were seven edges with high weight values, those were 
(1,5), (1,4), (1,3), (1,2), (0,4), (0,3) and (0,2) which 
represented the greatest number of interactions between 
agents. Nodes 0 and 1 had the greatest number of ties and 
wider edges, moreover, their Pl > 0.025, therefore we 
interpreted them as foragers. The mean probability of leaving 
the nest of all nodes was 0.022, which was less than 0.025, so 
we expected more loafers than foragers. After analyzing the 
results, we got 2 foragers (nodes 0, 1) and 4 loafers (nodes 2, 
3, 4, 5).  
 
 
 
 
 
 
 
 
 
 
 

(a) Social network 2 with nodes sized by their outdegree 
centrality  

 
 
 

 
 
 
 
 
 
 

(b) Social network 2 with nodes sized by their weighted 
outdegree centrality  

 
Figure 8: Graphs of social network 2 (the size of food 
sources is medium) between six mobile agents where node 
sizes are reflecting: (a) Outdegree centrality, (b) Weighted 
outdegree centrality. Edge widths are reflecting the number of 
interactions between mobile agents. Node colors represent the 
probability of leaving the nest: if Pl ≥ 0.025 the node is red; 
therefore, it is likely to be a forager and if Pl  < 0.025 the node 
is blue; therefore, it is likely to be a loafer. As it can be seen, 
node color and size are consistent with each other, that means 
bigger nodes and probability to be a forager coincide; 
similarly, smaller nodes and probability to be a loafer also 
coincide. Therefore, both approaches obtain same results (in 
this case, 2 foragers and 4 loafers). 
 

Simulation 3 - Large food sources size  

Figure 9 shows the weighted directed network obtained with 
the results of simulation 3. The mean outdegree centrality of 
this network was 3.6, that indicates there were many nodes 
that were the most interconnected to others, more than in 
Simulations 1 and 2. The mean weighted outdegree centrality 
was 6.83, that indicates there was a greater number of 
interactions between mobile agents than in Simulations 1 and 
2. There were many edges with high weight values, due to 

high food availability. Nodes 0, 3, 4 and 5 had the greatest 
number of ties and wider edges, moreover, their Pl  > 0.025, 
therefore we interpreted them as foragers. The mean 
probability of leaving the nest of all nodes was 0.029, which 
was greater than 0.025, so we expected more foragers than 
loafers. After analyzing the results, we got 4 foragers (nodes 
0, 3, 4, 5) and 2 loafers (nodes 1, 2).  
 
 
 
 
 
 
 
 
 
 
 

(a) Social network 3 with nodes sized by their outdegree 
centrality  

 
 
 
 
 
 
 
 
 
 
 

(b) Social network 3 with nodes sized by their weighted 
outdegree centrality 

 
Figure 9: Graphs of social network 3 (the size of food 
sources is large) between six mobile agents where node sizes 
are reflecting: (a) Outdegree centrality, (b) Weighted 
outdegree centrality. Edge widths are reflecting the number of 
interactions between mobile agents. Node colors represent the 
probability of leaving the nest: if Pl ≥ 0.025 the node is red; 
therefore, it is likely to be a forager and if Pl  < 0.025 the node 
is blue; therefore, it is likely to be a loafer. As it can be seen, 
node color and size are consistent with each other, that means 
bigger nodes and probability to be a forager coincide; 
similarly, smaller nodes and probability to be a loafer also 
coincide. Therefore, both approaches obtain same results (in 
this case, 4 foragers and 2 loafers). 
 

Summary of results 

The results of the social network analysis applied to the 90 
weighted directed networks obtained from the simulation 
experiments are summarized in Table 2. It reports the mean 
and standard deviation of number of foragers and loafers.  
 Figure 10 shows the results of mean and standard deviation 
of probability of leaving the nest of the six mobile agents in 
the 30 experiments per food sources size (i.e. 90 experiments 
in total). 
 Contrasting the results of Table 2 and Figure 10, we can see 
that the social network analysis results confirmed the 



expectations of number of loafers and foragers obtained by 
the mean probability of leaving the nest varying the food 
sources size. Hence, the results proved task allocation among 
mobile agents as an emergent property of this model, inducing 
two classes: foragers and loafers. The number of foragers and 
loafers was adapted to the environment conditions (in this 
case, food availability). 
 
 

Food 
Sources 

Size 

Food 
availabi-

lity 

Number of 
Foragers 

Number of 
Loafers 

Small Low 1.1 ± 0.3051  4.9 ± 0.3051 

Medium Medium 3.07 ± 0.7397 2.93 ± 0.7397 

Large High 4.77 ± 0.4302 1.23 ± 0.4302 

 
Table 2: Mean and standard deviation of number of foragers 
and loafers calculated over 30 simulations per food sources 
size (i.e. 90 simulations in total) by applying social network 
analysis to the obtained weighted directed networks. The low 
values of standard deviation indicate that the behavior of the 
model was consistent across simulations.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10: Mean and standard deviation of probability of 
leaving the nest while varying food sources size. The low 
standard deviation indicates that the behavior of the model 
was consistent across simulation experiments. These results 
show that with a low availability of food (small sized food 
sources) the mean Pl < 0.025, therefore, we expected more 
loafers than foragers; with a medium availability of food 
(medium sized food sources) the mean Pl  is a little above 
0.025, therefore, we expected similar number of loafers and 
foragers; with a high availability of food (large sized food 
sources) the mean Pl  > 0.025, therefore, we expected more 
foragers than loafers.  
 

Emergent property - Task allocation  

In all simulations we observed that task allocation emerged 
and induced two classes: foragers and loafers. There were 

more loafers than foragers with low food availability (i.e. 
small sized food sources); there was similar number of loafers 
and foragers with medium food availability (i.e. medium sized 
food sources); and there were more foragers than loafers with 
high food availability (i.e. large sized food sources). 

Discussion  

As we have seen, moving from agent-based modeling (ABM) 
to social network analysis (SNA) lead us to a better 
understanding of the complex system by studying its emergent 
properties. In our agent-based model of swarm robotics we 
have shown that task allocation emerges and induces the 
creation of two classes: foragers and loafers. Furthermore, one 
of our main results was that the number of foragers and 
loafers changed with the conditions of the environment, as in 
real ant colonies. It means, task allocation changes as 
conditions vary (Gordon, 1999). Our model highlights that 
when more food is available, more foragers appear, and vice 
versa, as we observed in the weighted directed networks that 
we created for each simulation results. Thus, we conclude task 
allocation implies an adaptive and self-organized process 
(Labella, 2003). 
 A distinctive property revealed by the social network 
analysis was that the nodes with the greatest outdegree 
centralities were the most interconnected with the others (i.e. 
more ties) and those with the greatest weighted outdegree 
centralities had wider edges, therefore those nodes which 
were bigger in both graphs were the most interconnected 
mobile agents (i.e. having more ties) with the greatest number 
of interactions (i.e. having wider edges), hence we can call 
them, the “influentials” in the colony. These are the foragers.  

Conclusions and Future Work 

 To summarize, we presented and analyzed our agent-based 
model of swarm robotics using social network analysis to 
show that it exhibits task allocation as an emergent property 
due to the Variable Delta Rule algorithm (Labella, 2003; 
Labella et al., 2006), which was inspired by ant foraging 
behavior. In future work, we are going to explore more 
complicated scenarios, for example, considering cheaters, 
those social insects that exploit the benefits of biological 
cooperation without contributing to them (Dobata and Tsuji, 
2009). Moreover, this can be extended by using social 
network analysis to develop agent-based models, that is, 
moving from social networks to multi-agent systems in order 
to establish the measures of those networks and then design 
agent’s behaviors that will reach those measures. This could 
potentially be used in order to run game theoretic (network) 
models in an agent-based modeling framework. 
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