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Abstract

It has recently been demonstrated that a Hopfield neural net-
work that learns its own attractor configurations, for instance
by repeatedly resetting the network to an arbitrary state and
applying Hebbian learning after convergence, is able to form
an associative memory of its attractors and thereby facili-
tate future convergences on better attractors. This process of
structural self-optimization has so far only been demonstrated
on relatively small artificial neural networks with random or
highly regular and constrained topologies, and it remains an
open question to what extent it can be generalized to more bi-
ologically realistic topologies. In this work, we therefore test
this process by running it on the connectome of the widely
studied nematode worm, C. elegans, the only living being
whose neural system has been mapped in its entirety. Our re-
sults demonstrate, for the first time, that the self-optimization
process can be generalized to bigger and biologically plau-
sible networks. We conclude by speculating that the reset-
convergence mechanism could find a biological equivalent in
the sleep-wake cycle in C. elegans.

Introduction
Caenorhabditis elegans is a one-millimeter-long soil worm
of the nematode family. It consists of only 959 cells, of
which 302 belong to the nervous system. C. elegans is a
case study model for biology (Girard et al., 2006), thanks
to its small cell count, short lifespan and rapid reproduc-
tion. The full understanding of cellular development and
the function of neural system mechanisms in human biol-
ogy remains an open question, which makes C. elegans a
good alternative. C. elegans is the first multicellular organ-
ism whose genome has been sequenced in its entirety (Wa-
terston and Sulston, 1998), as well as the first animal from
which the complete mapping of synaptic connections, called
the connectome, has been completed (White et al., 1986).
Knowledge of the connectivity of a complete neural system
can help to better understand genetic and molecular mecha-
nisms in neuroscience.

Network science provides further information concerning
the structure of the C. elegans connectome, such as the sta-
tistical and topological properties of the network (Watts and
Strogatz, 1998; Varshney et al., 2011). In terms of worm’s

network dynamics, simulation models have begun to play a
bigger role in the experiment-theory cycle in an attempt to
better understand the neural underpinnings of worm behav-
ior (Izquierdo, 2018). C. elegans has been studied also in
the artificial life research community (Kitano et al., 1998;
Winkler et al., 2009; Hattori et al., 2012; Izquierdo and
Beer, 2015; Beer and Izquierdo, 2016; Aguilera et al., 2017).
However, so far these simulation models have only worked
with smaller circuits, and not with the whole connectome,
and so the properties of the connectome’s state space remain
underexplored.

In this paper we therefore go the other way: we abstract
away from the worm’s situated behavior, and focus on the
dynamics of its whole connectome. In particular, we are
interested in determining if the connectome is able to self-
optimize its connectivity, namely by forming an associative
memory of its attractors such that the convergence of neural
states is biased toward better attractors.

The self-optimization process
The self-optimization process used in this paper is based on
the work of Watson et al. (2011), using the original network
model proposed by Hopfield (1982). We have two discrete
values for the states in the network si = ±1. Such values
represent the activity of a neuron. Model dynamics include
asynchronous neuron state updates, calculating with the fol-
lowing equation:

si(t+ 1) = θ

[
N∑
j

wijsj(t)

]
(1)

where wij is the connection weight between neuron i and j,
and θ is the Heaviside threshold function (taking values −1
and +1 as negative and positive arguments, respectively).

In order to be able to test the connectome’s convergent
states with respect to its original connectivity, we differen-
tiate two parts of wij , wO

ij represents the original configu-
ration of the edges at the beginning of the process, and wL

ij

store the Hebbian learning changes. Both make up the cur-



rent weights of the network:

wij = wO
ij + wL

ij (2)

In the Hopfield network model, a node i satisfy a constraint
posed by its interaction with node j if sisjwij > 0. While
actual interaction with neighbors determines the state up-
date si, system energy represents the degree to which inter-
nal constraints with the original weight configuration, wO,
remain unsatisfied. It is calculated as follows:

E = −
N∑
ij

wO
ij(t)si(t)sj(t) (3)

Hebbian learning should be applied to all system connec-
tions (i.e. the change in weight, ∆wij = δsisj , δ > 0) to
increase the attractor variation and reinforce learning.

wL
ij(t+ 1) = wL

ij(t) + δsi(t)sj(t) (4)

The algorithm repeatedly goes through the following se-
quence of steps: (a) arbitrary assignment of states for the
neurons (reset), (b) convergence of the network for a certain
time period, most frequently resulting in an attractor, and (c)
application of Hebbian learning.

Methods
The connectome. We ran the self-optimization algorithm
on the most recent version of the C. elegans connectome
produced by Jarrell et al. (2012). The database contains
hermaphrodite neural system information (males arise infre-
quently, at 0.1%), such as synaptic direction, type of synap-
tic connection (synapse or gap junction), and the number of
synapses between A and B neurons. We translated the con-
nectome into a directed multigraph, with neurons as nodes
and synapses as edges. This representation allows multiple
synapses and gap junctions between the same two neurons,
which naturally occur in the worm neural system.

Only 282 neurons belonging to a large somatic nervous
system are taken into account. We did not consider pha-
ryngeal neurons because they belong to another indepen-
dent neural system (Albertson and Thomson, 1976; White
et al., 1986). Neurons were arbitrarily assigned binary ac-
tivation states (−1, 1). In the neural network under study,
chemical synapses are modeled as single-directed links be-
tween neurons (for example, A → B indicates that neu-
ron A is presynaptic to neuron B, and B is postsynaptic
to A). Gap junctions are represented in the connectome as
double-linked neurons (if two neurons, C and D, have a gap
junction between them, there are two links: C → D and
D → C). There are 5,611 connections in total. 62.5% of
the total connections are chemical synapses, while 37.5%
are gap junctions.

We assigned the number of synapses between neurons as
the weight of each edge normalized in the interval (0, 1).

Figure 1: Illustrative examples of network state conver-
gence without self-optimization. We show network energy
after successive state updates for 10 independent conver-
gences. A Scenario without inhibitory connections (nega-
tive weights). B Scenario with 30% inhibitory connections
(negative weights). The addition of inhibitory connections
increases the difficulty of coordinating neural activity across
the connectome. Note the different y-scales when compar-
ing panels A and B.

Jarrell et al. (2012) estimate the functional strength of synap-
tic interactions with the resulting number. Both links in gap
junctions are assigned the same weight, and values vary be-
tween 1 and 81 (5.07 is the average weight per link). We
clip to 1 the 15 high-weight values, which we determined
with an arbitrary cut-off of weights greater than 44, before
normalization. Edges with higher weight values are scarce
(only 34 connections has a higher value than 44). Reduction
of this outliers broadens the space-state exploration during
the self-optimization; in other words, the range value of lo-
cal attractors is wider.

Since the connectome does not contain information con-
cerning inhibitory or excitatory connections, we tested two
separate scenarios. First, a scenario in which all synapses
are excitatory, and second, a scenario in which a percentage
of synapses is inhibitory. For the second scenario we
arbitrarily selected 30% of the edges and assigned negative
weights to them, based on the fact that 30% is a percentage
of inhibitory synapses that has been proven optimal in the
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Figure 2: Illustrative examples of self-optimization in two different scenarios. A without inhibitory connections (negative
weights) at the beginning of the process, and B with 30% inhibitory neurons (negative weights). Each panel shows the energy
of the neuron states after 1,000 reset-convergence cycles during three distinct phases: before learning (1-1,000), during the
self-optimization process (1,001-2,000), and after learning (2,001-3,000). Examples of state convergences of the phase before
learning can be seen in Figure 1. Self-optimization can be observed in both scenarios. However, the processes can be distin-
guished in that better attractors tend to be found without inhibitory synapses, but inhibitory synapses preserve a greater diversity
of attractors.

simulation of multi-task learning processes, at least for
mammals (Capano et al., 2015).

The neural network. Once the connectome was mapped
to a neural network, extra zero-weighted edges were added
to make a complete directed graph so that Hebbian learning
could add extra connections by changing their weights from
zero to non-zero values. In other words, we added previ-
ously non-existing connections between neurons in two di-
rections, and those extra edges represent potential connec-
tions, which may be needed for the removal of constraints
regarding interactions during the process (constraints posed
in terms of the satisfaction equation, sisjwij > 0) . There is
an initial total of 5,611 connections in the network (from the
connectome), which after adding extra edges rises to 80,213.
These extra edges do not have anatomical equivalents in the
connectome, but they could be conceived of in terms of func-
tional rather than structural connectivity. We measured and
reported the energy in terms of the original weight configu-

ration (5611 connections from the connectome). When the
learning phase ends, the constraint satisfaction percentage is
also based in this 5611 connections.

In a multigraph schema we must consider an identifier (k)
for each multiple edge that shares the same direction. In
light of this, the weight sum of all edges with the same direc-
tion was added to the state update equation (Eq. 1), rewritten
as follows:

si(t+ 1) = θ

[
N∑
j

(∑
k

wijk

)
sj(t)

]
(5)

A multigraph schema is also reflected in the way we cal-
culate system energy and Hebbian learning (Eq. 3 and 4,
respectively), because we iterate above all edges including
the multiple ones that share the same direction:

E = −
N∑
ijk

wO
ijk(t)si(t)sj(t) (6)



Figure 3: Visualization of the C. elegans connectome, consisting in 282 neurons with 5,611 excitatory connections, in a circle
layout with a topological bundling procedure. Black connections represent edges that satisfy the constraints that were specified
by the networks original weight configuration. Red ones represent edges that do not satisfy these constraints. We present
two illustrative examples. The figure on the left shows the connectome with arbitrary states at the beginning of the self-
optimization procedure, and the figure on the right shows the connectome with converged states after learning. Complete
constraint satisfaction can be observed on the right side.

wL
ijk(t+ 1) = wL

ijk(t) + δsi(t)sj(t) (7)

In summary, the network resulting from the connectome
data differs from a traditional Hopfield neural network in the
following ways:

• Asymmetrical connections are permitted.

• Self-connections are permitted.

• Since there are synapses and gap junctions between the
same neurons within the connectome, multiple directed
connections are permitted.

The first two connectivity restrictions were already lifted
by previous models of self-optimization (Zarco and Froese,
2018a; Froese and Manzanilla, 2018), but this is the first
time that the process is tested with a multigraph.

The self-optimization algorithm repeatedly goes through
the following sequence of steps: (a) arbitrary assignment of
states for the neurons (reset), (b) convergence of the network
for a certain time period, most frequently resulting in an at-
tractor, and (c) application of Hebbian learning.

The number of steps for (b) has been adjusted to 18, 000.
We observe this to be an adequate quantity to ensure either
stability or convergence in each cycle. We fixed the learning
rate δ (δ = 0.00001) for all experiments.

Results
Overall, the results demonstrate the feasibility of self-
optimization on the connectome. We report the results of
both the scenario that starts with all positive weights, and
the scenario with 30% negative weights.

We first explored the attractor dynamics of the network
without self-optimization. Figure 1 A,B shows the network
energy after successive neuron state updates. The network
always reaches an attractor before the next state reset in the
scenario with all excitatory synapses (Panel A). Unsatisfied
network constraints also tend to decrease in the scenario
with inhibitory synapses, but the network does not always
reach an attractor (Panel B). This shows that the addition of
inhibitory synapses increases the difficulty of neural coordi-
nation.

We then explored the network’s self-optimization capac-
ity. The experiment shown in Figure 2 A,B consisted in three
stages. First, we set an initial weight configuration taken
from the connectome and normalized (only positive values
in A and 30% negative values in B) and performed 1000
reset convergence cycles without Hebbian learning. Then,
we applied the self-optimization process using 1000 reset-
convergence cycles. Finally, we apply the network 1000 cy-
cles without Hebbian learning using the configuration ob-
tained by the self-optimization process. This graph illus-
trates a tendency to decrease global energy in both A and B,
although a global attractor is not reached in B.
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Figure 4: Percentage of constraint satisfaction before and
after self-optimization (Hebbian learning), measured at the
end of a reset-convergence cycle. For each case we con-
sider the average of 1,000 cycles. A t-test was used for
each data set (without negative weights and 30% negative
weights) to see if the difference between before and after
learning is significant. We obtain a p-value <<< 0.05 both
for non-negative weights and 30% negative weights, indicat-
ing a highly significant improvement.

To illustrate the size and complexity of the connectome,
we present in Figure 3 a diagram which shows the connec-
tome structure with a circular neuron layout where the edges
of different colors represent the satisfied and unsatisfied con-
nections.

Figure 4 shows the percentage of constraint satisfaction
before and after the self-optimization process. We applied a
t-test to each data set to compare before and after learning.

Discussion
In the present work, we have tested the dynamics of the
connectome of C. elegans with a Hopfield network and ap-
plied the self-optimization procedure in a multigraph struc-
ture. The results demonstrate that self-optimization can be
generalized to this bigger and biologically more plausible
topology. However, it is an open question to what extent this
success has implications for understanding the operation of
the nervous system of the worm. We respond to this open
question by considering three issues.

First, is the connectivity required for the self-optimization
process biologically plausible? We showed that under the
right conditions the connectome network presents a ten-
dency to optimize its own connectivity. It does so through
Hebbian learning-based removal of constraints during re-
peated exploration of its state space. In the original Hop-
field neural network model, this was achieved by restricting
connections in such a way that the network state would nec-

essarily always converge on point attractors, namely by en-
suring that connections are symmetric and that there are no
self-recurrent connections. The restriction to point attrac-
tors and symmetric, non-recurrent connectivity is biologi-
cally implausible. An important step is therefore to show
that self-optimization can still be achieved on an asymmet-
ric, multiedged, recurrent network, which can give rise to
a richer set of dynamics. We achieved this step with the
present work.

Second, is the reset-convergence cycle required for the
self-optimization process biologically plausible? In partic-
ular, what could be the mechanism that periodically relaxes
the constraints of normal functioning, which permits the net-
work to explore its state space? Following speculations by
Woodward et al. (2015), in our model the neuron state re-
sets could be interpreted biologically as a sleep-like state of
C. elegans, especially when the worm is quiescent. C. ele-
gans presents a quiescent behavior during lethargus, a sleep-
like stage that occurs during larval development (Nelson and
Raizen, 2013). Moreover, this sleep-like state also occurs
during satiety and after exhaustion. Nevertheless, the way to
define a wake-sleep cycle in the worm remains controversial.
Our model suggests that it would be worthwhile to look for
it, and to test its relationship to network self-optimization,
perhaps akin to sleep-dependent learning.

Third, is the percentage and distribution of inhibitory con-
nections biologically plausible? Again, we are limited by
the lack of more detailed biological information. We intro-
duced negative weights in the second scenario of the self-
optimization process in an exploratory manner. The results
suggest that their presence restricts the coordination between
neurons. Such a restriction of neural coordination across the
whole connectome could be biologically desirable, for in-
stance by helping to avoid problems arising from excessive
neural synchrony, such as in disorders like epilepsy. Another
advantage is that there is an increased diversity of better at-
tractors found at the end of self-optimization with inhibitory
connections. In this way we overcome worries raised by
Zarco and Froese (2018b) that convergence on single attrac-
tors could be limiting for applying the self-optimization pro-
cess in cognitive robotics, which typically require the possi-
bility to switch between multiple attractor configurations.

Future work
Further improvements to our current model can be made,
especially because the real neurons of the worm tend to ac-
tivate in a continuous rather than binary manner. In future
work, we will therefore test the self-optimization connec-
tome model with the dynamics of a continuous time recur-
rent neural network (CRTNN), which should in principle be
possible (Zarco and Froese, 2018b). It would also be inter-
esting to see what happens if we do not provide extra virtual
or functional connections to the worm’s connectome, and
restrict Hebbian changes to the original anatomical connec-



tome only. Another possibility is to analyze neural coordi-
nation in terms of local clusters of neurons that are anatomi-
cally related (Nonet, 1999), rather than measuring success in
terms of neural coordination across the entire connectome.
Finally, further mathematical analysis of our model can be
made, for instance by taking inspiration from the techniques
employed by other Hopfield neural network models of sleep
(Fachechi et al., 2019).
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